Specification Testing in Nonparametric Instrumental Variables Estimation

نویسنده

  • Joel L. Horowitz
چکیده

In nonparametric instrumental variables estimation, the function being estimated is the solution to an integral equation. A solution may not exist if, for example, the instrument is not valid. This paper discusses the problem of testing the null hypothesis that a solution exists against the alternative that there is no solution. We give necessary and sufficient conditions for existence of a solution and show that uniformly consistent testing of an unrestricted null hypothesis is not possible. Uniformly consistent testing is possible, however, if the nullhypothesis is restricted by assuming that any solution to the integral equation is smooth. Many functions of interest in applied econometrics, including demand functions and Engel curves, are expected to be smooth. The paper presents a statistic for testing the null hypothesis that a smooth solution exists. The test is consistent uniformly over a large class of probability distributions of the observable random variables for which the integral equation has no smooth solution. The finite-sample performance of the test is illustrated through Monte Carlo experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Testing a Parametric Model against a Nonparametric Alternative with Identification through Instrumental Variables

This paper is concerned with inference about a function g that is identified by a conditional moment restriction involving instrumental variables. The paper presents a test of the hypothesis that g belongs to a finite-dimensional parametric family against a nonparametric alternative. The test does not require nonparametric estimation of g and is not subject to the illposed inverse problem of no...

متن کامل

Testing a parametric quantile-regression model with an endogenous explanatory variable against a nonparametric alternative

This paper is concerned with inference about a function g that is identified by a conditional quantile restriction involving instrumental variables. The paper presents a test of the hypothesis that g belongs to a finite-dimensional parametric family against a nonparametric alternative. The test is not subject to the ill-posed inverse problem of nonparametric instrumental variables estimation. U...

متن کامل

Instrumental Variables Estimation of Nonparametric Models with Discrete Endogenous Regressors

This paper presents new instrumental variables estimators for nonparametric models with discrete endogenous regressors. The model speci cation is su ciently general to include structural models, triangular simultaneous equations and certain models of measurement error. Restricting the analysis to discrete endogenous regressors is an integral component of the analysis since a similar model with ...

متن کامل

Applied Nonparametric Instrumental Variables Estimation

Instrumental variables are widely used in applied econometrics to achieve identification and carry out estimation and inference in models that contain endogenous explanatory variables. In most applications, the function of interest (e.g., an Engel curve or demand function) is assumed to be known up to finitely many parameters (e.g., a linear model), and instrumental variables are used identify ...

متن کامل

Specification Test for Instrumental Variables Regression with Many Instruments∗

This paper considers specification testing for instrumental variables estimation in the presence of many instruments. The test is similar to the overidentifying restrictions test of Sargan (1958) but the test statistic asymptotically follows the standard normal distribution under the null hypothesis when the number of instruments is proportional to the sample size. It turns out that the new tes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008